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ABSTRACT

This report investigates two of the most common modes of localized failures; namely,

periodic fiber-bridged matrix cracks, and transverse matrix cracks. A modification of

Daniels' bundle theory is combined with WeibuU's weakest link theory to model the

statistical distribution of the periodic matrix cracking strength for an individual layer.

Results of the model predictions are compared with experimental data from the open

literature. Extensions to the model are made to account for possible imperfections within

the layer (i.e., non-uniform fiber lengths, irregular crack spacing, and degraded in-situ

fiber properties), and the results of these studies are presented. A generalized shear-lag

analysis is derived which is capable of modeling the development of transverse matrix

cracks in material systems having a general multilayer configuration and under states of

full in-plane load. A method for computing the effective elastic properties for the damaged

layer at the global level is detailed based upon the solution for the effects of the damage

at the local level. This methodology is general in nature and is therefore also applicable

to [0m/90,,], systems. The characteristic stress-strain response for more general cases is

shown to be qualitatively correct (experimental data is not available for a quantitative

evaluation), and the damage evolution is recorded in terms of the matrix crack density as

a function of the applied strain. Probabilistic effects are introduced to account for the

statistical nature of the material strengths, thus allowing cumulative distribution curves for

the probability of failure to be generated for each of the example laminates. Additionally,
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Oh and Finney's classic work on fracture location in brittle materials is extended and

combined with the shear-lag analysis. The result is an analytical form for predicting the

probability density function for the location of the next transverse crack occurrence within

a crack bounded region. The results of this study verified qualitatively the validity of

assuming a uniform crack spacing (as was done in the shear-lag model).
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CHAPTER 1

Introduction

Laminated composite materials can be engineered to exhibit gradual (or progressive)

failure as opposed to the less desirable catastrophic failure. Localized failures begin to

occur early in the loading history of a laminate, but due to the laminate's ability to

redistributeitsloadintemaUy,thelaminateas a whole remainsunfailedand continuesto

perform itsload-carryingfunction.As theloadingof thelaminatecontinues,thenumber

of localizedfailuresaccumulateand begin to degrade the overalllaminateproperties,

cvcntuaUyreachingthepointatwhich totallaminatefailureoccurs.

In tryingto model laminatefailure,itisimportanttorecognizetheprogressivenature

of the failureprocessin order to obtaina correctstrengthprediction.Ignoringthis

behavior,as isdone in firstply failure(FPF) theories,leadsto failurepredictionswhich

aretooconservative.When implementinga progressivefailurescheme, theunitof failure

which isto bc consideredmust be defined.At the macroscopiclevel,thisunitcan be

assumed toeitherrepresenttheentireloadbearingcapacityof a ply ("plyfailure");or this

plycan bc furthersub-dividedintosmallerunits,each correspondingtoa particularload

bearingmode ("modalfailure").Techniquesallowingforsuchbehaviorhave beenpursued
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as an improvement over FPF (Petit and Waddoups, 1969; Thomas and Wetherhold,

1991(b)). However, these methods also are conservative because they do not aUow for any

load carrying capacity of the damaged layer away from the localized failure zone. The

load redistribution scheme utilized in this report employs the modal approach with the

belief that it better represents the progressive failure nature of the composite. A non-

interactive failure function is used in which the individual stresses are assumed to act

independently of one another in the failure process. Four potential modes of failure are

recognized within each layer (see Figure 1.1). In the longitudinal direction a two-stage

failure process is considered. Both of these modes of failure are associated with the in-

plane normal stress in the fiber direction, 01 . The first stage is representative of the

periodic matrix cracking (cracks running perpendicular to the fiber direction and bridged

by the fibers) predicted by ACK theory. Failure of this mode degrades the stiffness

properties of the layer, but the survival of the fibers which bridge these cracks allows

continued loading. The second stage of failure deals with the fracture of these bridging

fibers. In the transverse direction, a single mode of failure models the occurrence of

transverse matrix cracking (through-the-thickness cracks running parallel to the fiber

direction). This failure mode is a function of the normal stress, o z. The fourth and final

mode is an in-plane shear failure associated with the stress _ (o 6 in Voigt-vontracted

notation). The failure functions for each of these modes are given below in equations (1.1)

through (1.4).

(1.1)
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Periodic, bridged matrix cracks Fiber failure

Transverse matrix cracking Shear failure

Figure 1.1: Potential failure modes for an individual layer.
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(1.2)

(1.3)

where

(1.4)

(x)-=x •u[x]=_0f 'x<O (1.5)
X , x>O(

and X_ and X c are the tensile and compressive strengths, respectively. Values of f less

than one (f < 1) designate the safe loading regime, and values of f equal to one(f = 1)

denote failure. (Keep in mind that the shear strengths must be equal, X: = X_C).

Unlike conventional engineering materials (i.e., metals), where local failures can be

relieved by plastic deformation thus allowing their strengths to be considered deterministic-

ally, composite materials' brittle nature results in their being characterized by a high

variability of material strengths. Therefore, in order for efficient application of these

materials, design methods using probabilistic failure analyses must be advanced. As a

result, rather than having a clearly defined fail�no fail situation as described in the

previous paragraph, the situation becomes a matter of evaluating the probability of

failure/sutUral ( i.e., Pr(f < 1 ) ) for a given system where the material's strengths are

4



CHAPTER 1: Introduction

considered to be random variables. Within this report, investigations will be made into

modeling both the progressive and probabilistic aspects of failure.

With regard to failure in the form of periodic matrix cracking, the use of a modified

bund/e theory to model the post-matrix cracking state predicted by ACK theory has been

proposed (Walls, 1986; Evans and Marshall, 1989). Chapter 2 will present a scheme for

incorporating this method into a laminate analysis algorithm which u"tdizes Monte Carlo

simulations to evaluate reliability. Example calculations using this method will be

demonstrated and compared with experimental results from the open literature. Some of

the problems encountered with the method will be discussed and potential causes will be

investigated.

The onset of transverse matrix cracking has been found to be a key occurrence in the

laminate failure process, and as a result much research has been devoted to its modeling.

Continuum damage models (Talreja, 1985; Nuismer and Tan, 1988) as well as many shear-

lag approaches (Garret and Bailey, 1977; Reifsnider, 1978; Laws and Dvorak, 1988; Lee

and Daniel, 1990) have been proposed for analyzing cross-ply laminates. Chapter 3

extends the shear-lag method of Lee and Daniel from a two-layer cross-ply system to a

general symmetric multilayer system. In Chapter 4, the elasticity problem for the region

of the laminate between two parallel matrix cracks having a general off-axis orientation is

posed from equilibrium considerations. This is done in terms of the average (through-the-

thickness) stresses and solved using the generalized shear-lag relation and the appropriate

boundary conditions. A method for modeling the effective elastic behavior of the damaged

material based on this solution is detailed. This model is then included in a computer

program designed for probabilistic laminate analysis and the results axe compared to those

5
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determined using the ply drop-off technique.

In Chapter 5, a cross-ply laminate experiencing transverse matrix cracking under

uniaxial longitudinal loading is studied. Combining the solution for the stress state in the

damaged layer (determined in Chapter 4) with Oh and Finnie's results for fracture location

in brittle solids (Oh and Finnie, 1970) an expression is determined for the probability

density function for the location of the occurrence of the next transverse matrix crack.

Example problems are presented, and the validity of assuming a uniform crack spacing in

models such as that of Chapter 4 is examined qualitatively.

6



CHAPTER 2

Periodic, Bridged
Matrix Cracks

The use of a modified bundle theory to model the post-matrix cracking state predicted

by ACK theory has been proposed (Walls, 1986; Evans and Marshall, 1989). In this

chapter the suitability of this method is examined by incorporating it into a load sharing

algorithm for the progressive failure study of composite laminates. Example problems will

be presented where both the modified bundle approach as well as a previous version of the

load sharing algorithm (Thomas and Wetherhold, 1991(b)) which did not permit separate

consideration of periodic matrix cracking have been used. The results of these analyses

will be compared to experimental results from the open literature. Some of the problems

encountered with the method will be discussed and potential causes will be investigated.

LAMINATE ANALYSIS

Consider an n-layer composite laminate with 4n potential failure modes. As a ramp

loading is slowly applied some of these modes will begin to fail in some layers. As a

7



CHAPTER2: Periodic, Brid_d MatrixCracks

result of these failures, internal loads must be redistributed and stiffnesses reduced. In

order to model these occurrences, load sharing rules must be adopted that are both

physically plausible and computationally manageable. Failure is assumed to be governed

by equations (1.1) through (1.4) of Chapter 1. In the following discussion, a local load

sharing scheme will be applied by which the load previously carried by the now-failed

mode will be distributed evenly between the two immediately adjacent layers within the

laminate. If either of these layers has already failed or contain modes which have failed,

that portion of the load is globally redistributed in accordance with the laminate constitutive

law (see ]ones (1975) for a review composite mechanics). Upon the occurrence of periodic

matrix cracking in a particular layer, the (_11 and Q1z terms of the layer's stiffnesses

matrix must be reduced. It is proposed that this reduction be made by the ratio of

corresponding strengths for that layer, i.e.,

Qtt (1- %-_:) ; j= 1,2 (2.1)

For all other modes of failure, the appropriatestiffnesses are conservatively reduced to

zero. That is to say, in the case of fiber failure Qll and QTa axe set to zero, for

transverse matrix cracking Q_, and Q,_ are set equal to zero, and finally for the case of

in-plane shear failure Qe6 is set to zero.

STRENGTH EVALUATION

At this point the ideal approach would be to state the problem in terms of a failure tree.

However, the number of different branches quickly becomes too large, and any change in

8
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the laminate configuration would require the entire tree to be rebuilt. The use of computer

simulations is a more viable alternative method of solution. A sample population of

laminates may be created within the computer's memory using realizations. That is,

hypothetical sample values of the modal strengths whose frequency of occurrence is

weighted in accordance with their distribution. The reliability of the laminate can then be

determined for a specified load via a Monte Carlo analysis.

The strengths Xu_ , X2 and X 6 are random variables assumed to be characterized by a

two-parameter WeibuU distribution, the parameters of which must be determined

experimentally. By inverting these distribution functions and sampling a uniform random

variable on [0,1] the needed realizations for these strengths can be obtained. A similar

method could also be employed for the strength Xt¢. However, it has been proposed that

the characterization of this strength can be arrived at through more physically based

arguments via the application of a modified bundle theory.

After matrix cracking has occurred, the longitudinal strength of the ply is governed by

the intact fibers which bridge the matrix crack sites. Daniels (1945) has characterized the

strength of a bundle of fibers under a tensile axial load as having a normal distribution with

(2.2)

= sl_/nb(sf)[1-b(sf)] (2.3)

where $. and _ are the average ultimate load and standard deviation of load, respectively,

for the bundle; with n being the number of fibers, b(s) the cumulative distribution

function for the failure of a single fiber under load s, and sI is the fiber load which

9
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maximizes the expression s[ 1 -b(s)]. For the problem at hand, a modification to this

theory has been proposed (Walls, 1986; Evans and Marshall, 1989) in which the bridging

fibers are taken to be analogous to Daniels' fiber bundle, with the added complex]ty of the

fibers' being embedded in a pexiodically cracked matrix, thus producing an axial variation

in the fiber stress.

Assuming the stress to be constant over the cross sectional area of the fiber, A, the

probability of failure for the fiber may be described by a Weibull distribution:

1b(s) = 1- -
]

(2.4)

where ¢z is called the Weibull shape parameter and is dimensionless, and pt is a scale

parameter based on length. The value of [31 is not generally measured directly from

experiment. Conventionally, tensile failure data is obtained for fiber specimens all having

the same experimental test volume, Vo, and with each s]3ecimen under a state of uniform

uniaxial tensile stress. This data is fit to a Weibull distribution of the form

a(o) = 1- - ; a,p >0 (2.5)

The Weibull scale parameter in equation (2.5) is based on the experimental volume, and

is inferred directly from the experimental data. From this value of p, the parameter 13z

can be obtained from the expression below.

(2.6)

The parameter p has dimensions of [stress] and those of 13z are [stress]-[length] TM.

10
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Figure 2.1: Axial normal stress distribution within fiber.

For the case of a fiber which bridges a matrix crack (see Figure 2.1), with the shear

stress (_) at the debonded fiber/matrix interface assumed to be constant, the axial stress

distribution within the fiber will be linear. The maximum values will occur at the matrix

crack faces and minimum values midway between the cracks. Evaluating the stress

through a force balance,

o(s,x)= s 2_ x ; 0,:x<-d (2.7)
A r 2

Here s is defined to be the fiber load at the matrix crack face, x is the longitudinal

position measured from the crack face, r is the fiber radius and d is the crack spacing.

The value of d must be between x" and 2x" (Aveston et al., 1971), where

11
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__(v./°.,
(2.s)

with (VI ,Vm) being the (fiber, matrix) volume fraction and on the critical matrix cracking

stress. It will be conservatively assumed that the value of d maintains a uniform value of

x'. Using the above expression (equation (2.7)) for the fiber stress in equation (2.4) leads

to the following form of the cumulative distribution function for a single fiber.

(2.9)

Performing the necessary maximization results in an implicit expression for s!, equation

(2.10), which may be solved numerically.

/?[ r,.$/= Ap, 1- -s'_) jj

(2.10)

This may in turn be used in equations (2.2) and (2.3) for the mean strength and standard

deviation to characterize Xv, the post-matrix-cracking ply strength.

EXAMPLES

The material system for the example problems was a silicon carbide fiber-reinforced /

reaction-bonded silicon nitride (SiC/RBSN) tested by Bhatt and Phillips (1990). The test

specimens measured 12.7 mm wide, had a gage length of 25 ram, and layer thicknesses

12
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TABLE 2.1

Weibull Strength Parameters for SiC/RBSN
(Bhatt and Phillips, 1990)

Hoa,a _u_, x, = p(upa)

Xt,, 6.5 244.

(XI)_ 5.2 741.

x2 10.9 2s.

X_ 7.5 56.

* assumed values

TABLE 2.2

Elastic Material Properties for SiC/RBSN
(Bhatt and Phillips, 1990)

El 193. GPa

E2 69. GPa

G_ 31. GPa

v n 0.21

of 0.25 mm. The fiber volume fraction was 0.3 and the fiber radius was 71 x 10 _ m. The

Weibull strength parameters are printed in Table 2.1. They were calculated mathematically

from the published values of the respective means and standard deviations. Table 2.2

contains information regarding the elastic material properties. Data was also given for the

individual fibers. Twenty (20) separate tensile tests were performed on individual

nitrogen-treated SiC fibers at a gage length of 25 ram. The average tensile strength was

calculated to be 2860 MPa with a standard deviation of 440 MPa and a Weibull shape

parameter of 8.2. From these results a value of 3043 MPa may be inferred for the

13
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Figure 2.2: Comparison of failure models for [02/90_ laminate.

Weibull scale parameter on a unit volume basis, [3.

The results of including the modified bundle model in a laminate analysis are shown in

Figure 2.2 for a [021902L laminate and in Figure 2.3 for a [+4521--45zL laminate. In

addition to these results, each figure also contains re.sults from a similar analysis with the

exception that periodic matrix cracking was neglected (i.e., only three potential modes of

failure per layer, corresponding strengths were (X 1),at, X2, X 6 ), as well as a curve fit to

experimentally, measured values of the laminate's mean strength and standard deviation

(Bhatt and Phillips, 1990). For the [0z/902L laminate, the curve for the modified bundle

technique shows a very tight distribution and does not agree well with the other two

14
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Figure 2.3:Comparison of failuremodels for[+4521-45z].laminate.

curves. A close examination of the results of the simulation that produced this curve found

that the mode of failure which ultimately governed the overall failure of the laminate was

the longitudinal fiber failure of the 0" layers. Furthermore, the modified bundle prediction

for the coefficient of variation (COV) of X_f was approximately 0.05. This value is much

lower than the COV value of 0.22 observed experimentally for (X1)_. The combination

of thesetwo factorsledto thesteepslopeof Figure2.2. For the[+452/-45_L laminate

the mode of failure which governed the laminate failure was the in-plane shear failure of

the layers. Thus the low predicted COV of Xb, did not effect these results. No

experimental values for the Weibull parameters describing the distribution of the shear

15



CHAPTER 2: Periodic, Bridged Matrix Cracks

strength X 6 were available. The value of the Weibull scale parameter for X 6 was chosen

to be twice that of the scale parameter for 7,2, and a parametric study was done using

"reasonable" values for the Weibull shape parameter. The shape parameter value that gave

the best fit, as compared against the experimental data, of the reliability curve for the

[+452/--452] 4 laminate was used in Figure 2.3 and is the value listed in Table 2.1.

NON-IDEAL BUNDLE

In an effort to explain the low predicted value for the coefficient of variation of X_

obtained using the modified bundle theory, the effects of certain non-ideal conditions which

may have existed, but were not considered in the model, are investigated. While the

present theory has accounted for a variability in the strength from fiber to fiber, it has not

allowed for any variability in the geometry of the problem. Kerans (1988) has stated that

all composite fibers are not identical and that these non-uniformities can produce

unintended but desirable characteristics such as increased toughness. Specifically, Kerans

studied the effect of non-uniform fiber lengths on the bundle's stress-strain behavior. To

find the effect non-uniform fiber lengths would have on the COV of the layer's ultimate

strength, a computer program was used to simulate a strain controlled test on a bundle of

such fibers. The number of fibers in the bundle was the same as in the experimental test

specimens, n =60. It was assumed that the bundle represented the complete load bearing

capacity of the damaged layer, and thus the layer's strength was calculated by dividing the

maximum bundle load by the area of the layer. A series of Monte Carlo analyses was

performed. A sample population of fiber lengths was simulated for each analysis. Each

16
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sample had a normal distribution which was truncated at arbitrarily imposed minimum and

maximum values lying five (5) standard deviations away from the mean. For each case

the minimum value was taken tO be the nominal bundle length, and various percentages of

this value were used for the maximums. The results are shown in Figure (2.4) and in

Table 2.3. It can be seen that while non-uniform fiber lengths do increase the coefficient

of variation, the magnitude achieved is still much smaller than that observed experimentally

and at the same time an adverse effect on the mean strength prediction is experienced.

Until now it has been assumed that the damaged layer has a regular crack spacing of

x'. More realistically the crack spacings will be uniformly distributed between the

minimum and maximum values of x" and 2x" aUowed by ACK theory. To study what

effect this would have, simulations were conducted keeping the same gage length (L) as

in the other analyses but allowing the crack spacings (d_) to take on random values

uniformly distributed between x" and 2x'. That is to say,

L = ___d i ; di6(x',2x') (2.11)
i-I

where n is the number of segments necessary to span the entire gage length. Applying

the modified bundle theory to a simulation of such a crack field lowered the COV of X o,

from 0.0453 to 0.0449. Based on this negligible change, it appears that the assumption

of a uniform crack spacing of x" is reasonable and errs on the conservative side.

Lastly, the effect of a degraded in-situ Weibull shape parameter for the fiber was

investigated. A parametric study was done over a range of values of from a minimum of

2.0 to a maximum value of 8.2 which was measured experimentally. The COV of Xtt

17
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TABLE 2.3

Effect of non-uniform fiber length on bundle strength

Number of fibers ffi 60 Number of trials ffi 500

--xlOO Mean Smmgth, coy a* P*0_Pa)

x v _pa)

0.0 630.1 0.0438 23.79 643.3

0.5 615.8 0.0442 24.51 628.7

1.0 573.8 0.0464 22.36 586.5

2.0 471.4 0.0689 15.61 486.4

3.0 385.0 0.0850 12.68 399.9

* Weibun paxanmtem estimated using maximum likelihood method
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TABLE 2.4

Modified bundle strength predictions for X1/

Mean Strength (MPa) Coefficimt of Variation

8.2 658. 0.045

6.0 605. 0.053

4.0 533. 0.067

2.0 416. 0.100

experiment:

682. 0.220

increased moderately and the mean strength decreased for a decreasing value in the shape

parameter. Complete results are given in Table 2.4.

SUMMARY

The modified bundle theory, even with the irregularities which have been introduced

in the previous section, does not adequately predict the variation which is seen experimen-

tally for the post-matrix-cracking longitudinal strength of a layer, XI/. This suggests that

the model is ignoring one or more important mechanisms. One possible area to be focused

on is the fiber/matrix interface; the interfacial shear stress is not truly a constant, stress

concentrations are present on the fiber at the crack face, also the matrix environment

makes the reloading of failed fibers away from the failure location possible. However,

while there are problems with the modified bundle analysis in its present form, the results

of the analyses which simply allow for a complete all-at-once failure in the longitudinal

19



CHAPTER2: Periodic, Bridged Matrix Cracks

direction are generally good.

redistribution scheme.

This is encouraging for the basic modal analysis and load
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CHAPTER 3

Generalized
Shear-Lag Analysis

The onset of transverse matrix cracking has been found to be a key occurrence in the

laminate failure process, and as a result much research has been devoted to its modeling.

Continuum damage models (Talreja, 1985; Nuismer and Tan, 1988) as well as many shear-

lag approaches (Garret and Bailey, 1977; Reifsnider, 1978; Laws and Dvorak, 1988; Lee

and Daniel, 1991) have been proposed for analyzing transverse cracking in cross-ply

laminates, but very little work has addressed the problem for layers of arbitrary

orientation. In this chapter, the method developed by Lee and Daniel for determining the

shear-lag parameters is reviewed and extended. Their original application of the method

was for a cross-ply [0=/90,]= laminate; here, the shear-lag relationship will be developed

for a generalized system comprised of three arbitrarily oriented layers of the form

[0/_1¢]=. This generalized shear-lag analysis will then be used in Chapter 4 to aid in the

solution of the elasticity problem for the region of a general symmetric laminate between

two parallel transverse matrix cracks.
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U2
Layer 2

Layer 1

Figure 3.1: Traditional shear-lag model.

SHEAR-LAG METHODOLOGY

Shear-lag analyses are generally set up to relate the shear stress present at the interface

between two contiguous bodies to the difference in their respective average displacements.

That is to say, for the bodies shown in Figure 3.1, a shear-lag rule applied in the

traditional manner would define the shear stress (z_) present at the interface between

bodies 1 and 2 to be proportional to the difference in the average displacements ( ul and

) observedin each of thesebodies.

x, = H(_'x-_) (3.1)

The proportionality constant H in the above equation is referred to as the shear-lag

parameter, and is a property of the entire system.

In regard to the application of shear-lag methods to composite laminates, layers 1 and

2 of Figure 3.1 generally refer to two orthogonal layers which comprise one half of a

symmetric laminate system. One of these layers is considered to have undergone some
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CHAPTER3: G_a]_l Shea_-lagAnalysis

form of damage, typically transverse matrix cracking, which results in the displacement

variation between the layers. If it were not for the damage being present, laminated plate

theorywould predicta uniformdisplacementfieldthroughthethicknessof thesystem!-

in theabsenceof bendingmoments and non-symmetricconfigurations.Variousmethods

existtoevaluateH, employingmechanics,energyprinciples,hindsight,and combinations

of theabove. The most methodicaland robustapproach,in thisauthor'sopinion,was

proposedby Lee and Daniel(1991)and expanded totwo dimensionsby Tsai,Danieland

Lee (1990).This isthemethod which willbe adoptedforthisreport,and theremainder

of thischapterisdevotedto extendingthismethod toa threelayersystem.

MODEL DERIVATION

The derivationisbegun by explicitlydefiningthesystemof interest.The laminateis

assumed tobe symmetric,and thereforeattentioncan be focusedon onlythoselayerslying

on one sideof thelaminate'smid-surface.Thus, a sixlayerlaminatereducesto only a

threelayersystem. Consideringthecasewhere themiddlelayerofthisthreelayersystem

has experiencedtransversecracking,theoverallgoalfor thischapterand the nextisto

determinethe effectsof thisdamage on the layer'sbehavior. That isto say, thatthe

middlelayeristhemain focusof interest,and therefore,the definitionof theproblem is

setupwiththislayerinmind. The layernumbering scheme isestablishedina manner such

thatthedamaged layerisreferredtoaslayerI,and thetwo adjacentlayersaslayers2 and

3. This isshown in Figure3.2.

The solutionof theproblem willbe conductedinthematerialcoordinatesystemoflayer
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Figure 3.2: Three-layer system.

h2

hi

h3

X

1. This requires a transformation from the global x-y coordinates of the laminate to the

x'-y" coordinates of layer 1 (note that this is an orthogonal transformation about the z

axis such that z "=z). The system is now sufficiently defined for the derivation to proceed.

Key to this derivation is the assumption that the out-of-plane shear stresses vary linearly

through the thickness within each layer. As a result, a quadratic displacement field

through the thickness direction for each of the layers is proposed

u'_(x;y.z)= a_z2+a2z+o_

V'l(X;y;z)= a4Z2 + asZ + o6

u'2(x .y .z) = aTz 2 + asz + a9

v'2(x;y.z ) =a_oz2+a.z +o12

• U'3(X_Y',Z) = 013 z2 +aI4Z + als

v'3(x.y .z ) = a16z2+alTz+als

0-2)

(3.3)

0.4)

(3.5)

(3.6)

(3.7)

with u'_and v"i designatingdisplacementin the x" and y" directions,respectively,for

layer i (where /=1,2,3), and the coefficientsa_,...alsrepresentingundetermined
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functions of x" and y'.

The constitutive relation for transverse stresses and strains for layer i is given below.

LYy'zj_

i =1,2,3 (3.8)

stiffness terms are present

coordinate system. These

(No summation is implied by the repeated subscript in equation (3.8)). The primes on the

to signify that they have been transformed to the x'-y"

equations can be considered separately from the in-plane

constitutive equations because of the assumed orthotropy of the layers (Reismann/Wether-

hold, 1988).

The appropriate strain-displacement relations are given in equation (3.9).

y(O au't .(0 av'l
x'z- az ; Ty'z- _Z

(3.9a,b)

aw
These equations neglect the influence of deformation in the out-of-plane direction, i.e., _:

8w
and _;. Utilizing the displacement equations (3.2 - 3.7) as well as the sWain-displacement

relations 0.9a,b) in the constitutive law yields the following system of equations relating

the out-of-plane shear stresses to the unknown coefficients of the displacement equations.

'x,i} - [2axz +a2]":i'z x= [Q]l l2a_+a,I

+?=Iol,/2o+ +o.p

(3.10)

(3.11)

(3.12)
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==hi*h3

z--h8

2

3

Z=0 _.,
X

Figure 3.3: Boundary conditions for three-layer system.

Note that use has been made of the fact that the transformed coordinates are aligned with

the material coordinates of layer 1, and thus [Q']I = [Q]l-

Considering the boundary conditions (see Figure 3.3), states of zero shear exist on the

top face of the laminate (z = h I +h.z +h3) and at the mid-plane (z = 0),

and conditions of continuity exist at the two layer interfaces (z =hl+h 3, z =h3),

,z(z=hl+h3)J2 _:,,(z=hl+hs)Jt ['t'_-2)J

0.13)

(3.14)

0.15)
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_,'z(z=h') - (3.16)1¢.,-"1
We have introduced the variable definition _0-2) _0-2) _0-3) and _o-3) to designate the

sbem" stresses present at the interfaces. These stresses arc undetermined functions of x"

and y'. Applying the above boundary conditions to equations (3.10 - 3.12), the

coefficients for the linear and quadratic z terms can be solved for as functions of the

inteffacial shear stresses, and layer stiffnesses and thicknesses. This results in displace-

ment equations containing the shear stresses and the "a" coefficients of the zero-order z

terms as unknowns.

1{tv.,j : [Q];' _-2h,z _ e-2(h,+_)_ + o3 (3.17)

= rn,l-U z'z l, Z
[v;j LM" J$ _ (I-3)l_ +[x,'z J/"3 [alsJ

(3.19)

Requiring displacement continuity for u" and v" at the (1-2) and (1-3) interfaces yields

expressions for the last remaining unknown coefficients,

[[Q];'R,+[0"]2',%]
-2)) f (t-3)]

•"= / -I I_='z /
(1-2)_ +[Q]I R3/ (1-3)_

," J F," J
(3.20)

27



CHAPTER 3: G_ S_u'-]a,g All]_ysis

where

o_°.J-C+1, + +tCJ: ] 0.21)

- 2h I R+- 2h I

R2= (h, +h+)(hl +2h2 +h3) h,_- 2 (h+.+h3)h3

2/12 Rs - 2h+

r,:- (+""+'++)_
2h I 6- 2

Equations (3.20) and (3.21) represent a system of four independent equations in terms of

SiX unkfiowrts (a3, a6, ag, a12 , al_ and ax8 ). There is not sufficient information available

to explicitly solve for each of the unknown terms. However, by averaging the displace-

ment equations and subtracting (in order to find the difference in average displacements

required for a shear lag analysis), all the unknown coefficients will drop out of the

analysis.

The average displacement within each of the layers can be determined by integrating

the corresponding displacement equation (i.e., equations (3.17) through (3.19)) over z and

dividing by the respective layer thickness. This procedure results in the following set of

equations for the average through-the-thickness displacements (note: these displacements

are still functions of x" and y').

+ (3.22)
I.v+:i'l_-,J [<?];' _.t+%:(,_2+ r. tt__:+)lJ a,+
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_,;j=to'l;'[_,VU_ * °_.
(3.23)

where

v,, LoI,, (3.24)

R 7 =

•_[(h,,,-h,)'-h_]-h,(h,-,-_)'-,-h_
2h)

R s =

-_[(h,+h,)'-h_]-(h,+h,)'+(h,+h,)h_
2h_

_[(h I + ha + ha ), _(h I + ha)s] _(h I + ha + ha ), +(hi +/:2 + ha )(hi + ha)2

2h_

h 3

Rl°- 6

Subtracting to find the appropriate "differences" in the average displacements results in

equations which axe functions of the layer stiffness and thickness terms (which are known),

Ia,-a,!
the interracial shear stresses (which are unknown), and the expressions [a6_au.j and
Fa,-al,1
,% -a18 j involving the remaining coefficients from the displacement equations (these are

known from equations (3.20) and (3.21)). The final forms

displacement equations are given below:

of these difference in

(3.25)
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where

E,', J

(3.26)

1
hl t

[_)]= -_[Q];
hl 1

[c] = X[Q][

[D]= _[O];' + _[O']:

At this point, as a check, the three layer model can be compared to Tsai, Daniel and

Lee's two layer model. If layer 3 were no longer present, the (1-3) interface would

_(1=3) • O-3)become the laminate's mid-surface, and as a result the shear stresses xx'z anoCy:

would be equal to zero due to symmetry considerations. Under these conditions, equation

(3.25) becomes

= , -I h2 z'z

l';-',J -[o]_'-_÷[o ]. _-[I _.-,,I
'E,: J

which agrees with the published solution (Tsai, et al., 1990) for a two layer system.

Equations (3.25) and (3.26) can be inverted to solve for the shear stresses as a function

(3.26)

of the difference in the average in-plane displacements for each of the layers
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-3_1 ....o_+,-
J t t

(3.27)

[z.] -- [[o]-[c][a]-'[n]] -1 (3.28)

[//] = [A]-I+[A]-t[B][L][C][A] -' 0.29)

IS] = -[A]-I[B][L] (3.30)

[K"J = -[L][C][A]-I (3.31)

In this form, resemblance to traditional shear-lag analyses can be seen, with the out-of-

plane shear stresses at the interfaces being stated explicitly in terms of the differences in

the average in-plane displacements. The matrices [HI, [J], [K] and [L] are the shear-lag

parameters for the system. These parameters are constants which are completely defined

by the equations above, and contain only elastic constants and layer thicknesses.

SUMMARY

In this chapter a generalized shear-lag analysis has been developed to modal a system

comprised of three arbitrarily oriented layers (and thus, a six layer symmetric laminate).

The only assumptions made in the development of this model were the linear variation in

the out-of-plane shear stresses through the thickness of each layer, and the form of the

stress-strain constitutive relationship. These assumptions along with stress and displace-

ment continuity considerations then led to the shear-lag relationship of equations (3.26) and

(3.27). This relationship shows the system to be coupled: the shear stresses at the interface
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between layer 1 and layer 2 are a function of not only of the displacements in layers I and

2, but also the displacement of layer 3. Similarly, the shear stress at the (1-3) interface

is coupled to the displacements in all three layers. Were it not for a methodical approach

to the derivation of the shear-lag relationship, this coupling effect might very easily be

overlooked, and the functional form of the effect would most certainly not be otherwise

intuitively determined.
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Elasticity Solution
of the

Three-Layer Problem

As discussed in the Introduction, the failure process in composite laminates often

initiates with the onset of transverse matrix cracking within the individual layers. The

initiation of transverse cracking within a layer occurs when the transverse stress present

within the layer reaches the local strength. This strength value is typically referred to as

the first matrix cracking strength. When dealing with brittle materials (e.g., ceramics)

the purpose of designing with composite materials as opposed to monolithic materials is

to reduce the flaw sensitivity of the material system. While this desired effect is realized

in a relative sense, brittle matrix composite materials still possess an inherent flaw

sensitivity, and as a result the observed strength characteristics for the composite contain

scatter. In this report the material strengths are considered to be random variables

represented by WeibuU distributions. However, even after transverse cracking has

occurred within individual layers, the system as a whole can continue to survive due to the

in-situ constraints of the laminate system on these individual layers. In fact, due to
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shearing effects between neighboring undamaged and damaged layers, the damaged layers

themselves can still continue to carry load! In this chapter, the reloading of a damaged

layer in the region between two paraliel transverse matrix cracks is investigated in detail.

This analysis will be carried out for a system of three arbitrarily oriented Myers under

general in-plane applied load conditions. It will be shown through homogenization

techniques that this solution is sufficient to model the damage effects of transverse matrix

cracks in any symmetric laminate.

DEFINING THE PROBLEM

The investigation begins by considering a general symmetric multilayered laminate

having a total of 2n Myers. The corresponding layer thicknesses and orientations are

designated by hs and 0s, respectively, for j = 1 to 2n. It is assumed that the laminate is

subjected to a general in-plane load of (2P_,2Py,2P_). Owing to the laminate's

symmetry, attention is restricted to only those layers above the mid-surface (i.e., layers

1 through n), thereby reducing the complexity of the problem by a factor of two. As a

result of the applied load, transverse matrix cracking begins to develop in one of the inner

layers, namely, layer i. Figure 4.1 depicts a schematic representation of the system just

described.

The goal is to determine how the formation of these transverse cracks effects the load-

carrying capabilities of the damaged layer, and thus in turn the global level behavior of the

entire laminate. To achieve this, the stress state for the region between two parallel

transverse cracks of the damaged layer needs to be determined at the local level. This
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P

x

Figure 4.1: Laminate undergoing transverse matrix cracl_g in layer i.

stress state is a function of position in all three spatial coordinates, i.e. ( a }_ = { o (x,y,z)}_.

However, because interested is focused on the in-plane effects of this damage (i.e., the

problem deals with a thin plate within the analytical confines of classical laminated plate

theory), only functional relationships with respect to x and y are of main interest. Thus,

the solution for the average through-the-thickness stress within the layer, {5 }i = {_(x,Y)}i,

is pursued. As a note, throughout the remainder of this chapter, reference to a variable

as an average value or the use of the over bar symbol will always refer to a through-the-

thickness average unless otherwise specifically stated.

At the local perspective from which this problem is being approached, only the stress

solution for the area in the damaged layer between the two transverse cracks is of concern.

The knowledge of the stress state throughout the remainder of the laminate is only of
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interest as it affects the damaged region. Thus, in an effort to reduce the complexity of

the problem, it is proposed that all layers, other than the damaged layer of interest, be

homogenized. This action results in a system which is elastically equivalent at the global

level, and has been effectively reduced from n-layers to only 3-layers. This new

homogenized system is shown in Figure 4.2. In the new system, the layer numbering

scheme has been reordered such that layer ] refers to the damaged layer and layers _. and

designate the two adjacent layers, with the tildes (-) used to differentiate between the

homogenized and original systems. The elastic properties and layer thickness for the

damaged layer in the new system, layer i, and in the original system, layer i, remain the

same, i.e.,

: [s], (4.D

The properties for layers _ and

expressed as

hI = hI (4.2)

are now given by a thicknessweighted average

j=l

; j,i
(4.3)

j'l-I j=a

h_ = E hj ; h_ = E hj (4.4)
j=l j=i+l

Here _ and/_ are the layerthicknessesin thenew system,and IS ]_ and IS ], arethe

compliancematricesfor the homogenized layers. The [._] notationsignifiesthatthe

compliance matrices have been transformed from the local material coordinates of the layer

to the global coordinates of the laminate. Since layers _ and _ possess the same elastic
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Figure 4.2: Elastically equivalent three layer system.

properties in the homogenized system, the problem to be solved is further simplified.

Figure 4.3(a) shows a top view of the laminate. The matrix cracks in layer i are

designated by the dashed lines. It becomes apparent from this view of the problem that

the natural coordinate system in which to pursue the solution is the local material

coordinate system of the damaged layer. Thus, the problem is set up in the x'-y"

coordinates of layer i. Note that this is an orthogonal transformation about the z axis

such that z "= z. A detailed view of the representative system for this problem is shown

in Figure 4.3(b). From this point on, all analysis will be conducted for the homogenized

system. Therefore, no ambiguity should result from dropping the tildes (-) from the layer

designations in order to ease notation.
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Figure 4.3 (a) Top view of the laminate. Co) Detailed view of the representative

volume element to be solved.

PROBLEM SOLUTION

The solution begins with a formulation of the in-plane equilibrium equations for the

three-layer system. Consider blocks of differential size in the in-plane directions and with

finite thicknesses corresponding to the individual layer thicknesses in the out-of-plane

direction (see Figure 4.4). Summation of forces in the x" and y" directions for layer 1

yields,
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I;fgure 4.4: Free body diagrams for individual layers in a three-layer system.
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c,, "*/ c,) aN_"_)_ ",'

&y(_)
+ (1) + x),- , ,. _{1-2)..,_,.a..,

(4.5a)

x'Z --
ax" Oy"

(4.Sb)

_(t -3)_ ¢0,_-2) _ ---x'y"+ (4.6b)

In a similar manner, the forces acting on layers 2 and 3 may be summed. The resulting

local equilibrium equations for all of the layers are grouped together and presented in

equations (4.7) through (4.I2) below.

._(_-z)_ 0N,e-) _.¢)• 4" s'_YZ'Y"
--X'Z

(4.7)

-2,_ ON2"alv,_') (4.8)
y'_ _, 4"_,

.c(1-3) (1-2) aN(l') + oNO)y"
x', -'Cz'_ -

ax" _"

RN O) RN (1)
_(1-3) _0-2) _ ---x')," + ---7"
_y'z - _y'z &" By"

(4.9)

(4.10)

4O



CHAP'rER4: Elasticity Solution

_" .X_ B

- xx'z +

_.-_)_a_ )-a_(3_
+ "" vT"

-'b'_ ax" ay"

(4.11)

(4.12)

We make the assumption that the effects of the transverse cracking are direction-specific.

That is to say, the influence of this form of damage is seen as the observer moves in a

direction perpendicular to the matrix crack face (y" direction); and if the observer moves

parallel to the fiber (x" direction), no damage influence is detected. Thus, all parameters

are constant with respect to x" ( i.e., °e)=0). This simplifies the local equilibrium

equations, resulting in ordinary differential equations with independent variable x" only.

_(____'(_),
z'Z -

ay"

dN,(l)
O-3) _(1-2) --'='y"

"_x'z -";x'z -

¢DV(1)
0-3) 0-2) _ ---g

"_y'z -'_y'z dy"

_(,_,) _v;_).
- "_='z -

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

A further result of this assumption is that displacement continuity between each of the
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layers in the x" direction is maintained. Thus,

The objective is to determine the stress state for layer 1.

CHAPTER 4: Elasticity Solution

(4.19)

Therefore it is reasonable to

look at equations (4.15) and (4.16), which relate the interracial shear stresses to the in-

plane loads for layer 1. Begin with equation (4.16) which sIx_ifically deals with the rate

change of normal loading in the y" direction as we move away from the crack face.

_o) _(_-') - "c_ _>

This equation contains both in-plane effects (i.e., the loads) and out-of-plane effects (i.e.,

the shear stresses), but can be written entirely in terms of in-plane effects by making use

of the shear-lag equations (3.26) and (3.27). Using these equations, the interracial shear

stresses appearing in this equilibrium equation can be written in terms of the in-plane

displacements.

_(1-2),.z =

,_(1-3),.z :

+ H22(_',-_"2) + Jx2(['i-_'3) + J22(_"x-_'3) (4.20)

+ K22(_'_-_2) + LL_(ff'x-Y'3)+ L22(_',-_'3) (4.21)

From the displacement continuity assumption, the difference in the displacement in the x"

direction between each layer must be zero, i.e. (u',-u'2) = (u'x-u'3) = 0.

equilibrium equation thereby becomes,

Differentiating

u

The local

- + (L=-J=) (4.22)

this equation with respect to y', and applying the strain-displacement
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relation

ey. (4.23)
dy"

yields a governing differential equation containing both unknown load and swain terms.

dy" - . - . + (4.24)

LAYER THICKNESS EFFECT

Thus far the governing equation has been modified from one with mixed in-plane and

out-of-plane effects to an equation solely in terms of in-plane terms. The next step

involves a further modification to this equation such that the unknowns represent the same

physical phenomena (i.e., either strains or loads). By utilizing the constitutive relation for

the individual layers, the strains appearing in equation (4.24) can be expressed in terms of

the in-plane loads.

_it + ¢ O)_r(x)+ S (1)_0) ]

= _ L" 12",x" ', 22,,f ,, 26,,=yj (4.26)

='_[ 12 4" ," 22,'f " 2,',_yj (4.27)

It is important to note that though the only stresses contained in these equations are in-

plane, this does not imply that a plane stress state is being assumed. Because the

individual layers are orthotropic, the in-plane strain and out-of-plane stress are uncoupled.
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Therefore, equations (4.25) through (4.27) do not preclude the existence of out-of-plane

shear stresses; this is indeed important due to the role they play in the reloading scheme.

The primes on the compliance terms are present to signify that they have been transformed

to the x'-y" coordinate system (note that no transformations for the compliance terms for

layer I are necessary).

At this point, two specific examples (one for a two-layer case and another for a three-

layer case, see Figure 4.5) and an inconsistency is detected. In the two-layer case, a layer

containing transverse cracks is faced on one side by an undamaged layer which provides

for reloading the damaged layer. The related three-layer case has been created by basicany

"splitting up" the undamaged layer from the two-layer case into two separate layers and

placing one on each face of the damaged layer.

the two-layer case is given below,

The governing differential equation for

-g%._ (4.28)

where/_ designates the shear-lag parameter for the two layer case (Lee and Daniel, 1991);

the governing equation for the three-layer case is given in equation (4.24).

The elastic properties are the same for the two cases, therefore the loads are related as

follows,

(NO)h__r_,r_ = 0VO>)z__.._.. (4.29)

(,N,CZ))3_aT_=_ = 1 l_vO)i (4.30);v, ,2-_==,

Calculation of the strains using the constitutive relations above leads to the incorrect

prediction that the difference between the strains of layer 1 and layer 2 are the same for
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| t / 1 t

3 t/2

Figure 4.5: Related two-layer and three-layer eases.

both eases. In actuality, it is known that there is a thickness effect present such that as the

thickness of the facing layer decreases, the difference in the strains also decreases. Thus,

the relationship sought to predict is:

(4.31)

In order to achieve this prediction, the introduction of a correction term becomes

necessary.

In proposing the form of the thickness correction terms, terms are defined such that the

rate of reloading is the same in both cases. Thus the following relationship is required to

hold true,

d-_):__,.=-- t_-_)_-_=,
(4.32)

This condition may be restated using the shear-lag relationships,

+ )
(4.33)
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where thickness correction terms, 82 and 8 3 , for layers 2 and 3 respectively, have been

introduced to modify the difference in strain terms. For this example case, upon

evaluating the shear-lag parameters, we find

(/C22-H22)= (/.,.22-./22)= 2x/-I' (4.34)

Additionally, because the elastic properties are the same in the two facing layers, the

strains in these layers are the same.

_? =_ (4.35)

Substituting this information into equation (4.33) results in the following condition on the

thickness correction terms,

_ i (4.36)8 2 + 83 - _

The ensuing additional conditions are imposed,

- ' if h2 = h3 (4.37)8 2 = 83 - ;

a2=o ; 83=1 if h2=0 (4.38)2

1
82 = ] ; 83 =0 if h3 =0 (4.39)

The following forms which satisfy the above conditions are proposed for the correction

terms.

82 - ; 8 3 - (4.40)
2(h2*h3) 2(h2+h3)

An alternative interpretation (Tsai, 1993) to the discrepancy between the two-layer and

three-layer formulations is that a facing layer, regardless of its thickness (or lack thereof),
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provides reloading support to the system; and thus the fact that the solution for predicted

shear force transmitted to the damaged layer is discontinuous at the transition point from

a two-layer to a three-layer system should not be unexpected.

This author believes that "real life" lies somewhere in between these two interpreta-

tions. That is to say, that a three-layer configuration provides a more efficient reloading

mechanism, yet there still must be some thickness effect present. The perspective of Tsai

would over-predict the reloading capability of the system, and thus err unconservatively.

Whereas the interpretation of the thickness effect presented in this section approaches the

correct solution in the limit, while erring on the conservative side. Thus, it is this

thickness effect model which is adopted for the remainder of this body of work.

SOLUTION (continued)

In the homogenized system, the elastic parameters for layers 2 and 3 are the same, and

as a result _, = _o_.

becomes

The g.overning differential equation for the three-layer case thus

d2hr(D

-,. _
dy ,'_

(4.41)

where _ is a known constant which is a function of the shear-lag parameters and the

layer thicknesses.

_ 1

9m 2(h2+h,)I_(/'Lx'-Km)__ + h,(].x,-/-.zz)] (4.42)

Substitution for the strains using the constitutive relations (equations 4.25-4.27) produces
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a governing differential equation entirely expressed in terms of in-plane loads.

dy "2
f I +s 1

= $,,, _ [ ,_ = -,' u_,z'y'l
1 [e{l,_,_l) + Sg)/_yl) _.¢(x)jv(" fl

- _'11"X2"¢ -"_"x'fJ/ (4.43)

However, as it stands this one equation contains six unknowns and thus five additional

independent equations must be found. From global equilibrium considerations (see

Appendix A) three of the necessary equations are obtained.

P,.: N_f)+N_f)"N_f): N_yl-)+(1+ _)N_f )

= ,,vl._,+Iv_._.N_._.= --x'r"NO)+_,1 _) xy

(4.44)

(4.45)

(4.46)

These can be used to solve for the in-plane loads of layer 2 in terms of the in-plane loads

of layer 1 and the loads P=_ Pr' and Pz'r" (transformed from the known applied loads

P_, Py and P_, see Appendix B). Continuing the previously made assumption of

displacement continuity in the x" direction implies that the normal strains in this direction

for each layer are equal.

_1) =_,_ (4.47)

This equation can be used to solve for N_xl.) in terms of the remaining unknown terms.

Substitutionof these resultsinto equation (4.43) produces a second order, ordinary

differential equation with only two remaining unknowns, /_yx, and N_!y)-.

2 o)
d N_, (l) + (1)

4Y ''z - _.22(aN'_, .qN:,r,+13 ) (4.48)
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The coefficients a, 11 and 13 are constants which are algebraic functions of the elastic and

shear-lag parameters, and [3 also contains the applied loading terms,

(4.49)

[J = AzPx,+A2P_,..A3P=.y, (4.51)

where

•(2) ="11 +_ +_
I S_)_$ _ +/_A,= +,,,, _ _ ) Lh, _,+h,

1 I S_) (cO) 5,_) /-xf 5_) S'_) /1- ,(2)/_"11 + _ 4.

(4.52a)

(4.52b)

(4.52c)

The last required equation comes from the set of local equilibrium equations. Using

equation (4.15), and applying the shear-lag relations along with the necessary thickness

correction terms, a second order ordinary differential equation for h'_=_,is achieved which

is similar in form to equation (4.41).

d 2N(1) _ _.._,1))-","- <,.53>
dy "2
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_/12-
2(_ *hO (4.54)

Following a procedure similar to the one outlined above, this differential equation can be

_, 11 and 13, and thereformulated such that it contains the known constants _,

unknown loads N_y!) and N_z_..

(4.55)

Thus with equations(4.48)and (4.55)a systemof two coupled,second order,ordinary

differentialequationsisobtained.The boundary conditionsforthisproblem arehomoge-

neous owing tothetraction-freecracksurfaces,

_v_(y'=o}=N,c,'_(y=_}=o

O)t , --0)- ,N_.y_y =0)= zv_.,.(y=2s) = 0

(4.56)

(4.57)

where 2s is the distance between two parallel matrix cracks. This system can be

uncoupled at the expense of increasing the order of differentiation, resulting in the

following fourth order, homogeneous differential equation,

_,, (_*,,+n*n) dy,_

with the new boundary conditions,

N,c9(0)= N,¢.a)(2s)= o

- 0 (4.58)

(4.59)
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and

d2N'(_)(0)- d2N'(9(_) - Ptzz (4.6O)
dy_ dy_

/V.(1) • ,The solution of this equation for N(,1)(y") then leads directly to N(X)(y ") and x'y'tY )

being known as well. The final forms of the solution for all three in-plane loads of layer

1 can now be written as

N_:)(y')=BIstnh(Xy')+B2cosh(7.y')+B3

N(.1)(y')=B4sinh(7.y')+Bscosh(7.y')+B6

N_.(y') =BTshxh(7.y') +Bscosh(7.y')+B9

(4.61)

(4.62)

(4.63)

with expressions for 7. and the coefficients B_ through B 9 given below:

7. = +_/a_22+ n'x2

l_.22 1 -cosh(27.s)
e,-

7.2 sinh(27.s)

B_= -es e, = -e,
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(-('(1) ¢"(2) _'1[ (_'(1) S'(2) '_ "-(1)_'16 _1d26) )]
= I "" + " " I I e 1"12 + 12 1 a (

, (I) ,(2) + ,(2),,, s,+,,/-*[ s,+,+.1

This solution for cases where a full general in-plane loading is applied is dependent upon

a non-zero value for the shear-lag terms _, and _L_- The value of _, wiLl always be

non-zero; however, for certain laminate configurations _,_ = 0. Further details are

discussed in Appendix C.

Finally, the shear stresses at the interfaces can be calculated. From the local

exluilibrium equations, the shear stresses at the (1-2) interface are known in terms of the

in-plane loads of layer 2,

_D_(2)
_o-2) --='f (4.64)
"_z'z ffi " dy"

dN.(2)
_(1-2) _ ---+," (4.65)

Combining the solutions for the in-plane loads of layer 1 with the overall equilibrium

equations (4.44) through (4.46), the loads for layer 2 may be determined and equations

(4.64) and (4.65) can be evaluated.

o-,)_ _ -a,x,e_(xy')] (4.60
+,,.= _;. [-e,_.co,h(Xy')

c0-2)- /_ -B4_'cosh(_'Y')-Bs_'sinh(_'Y')] 0.67)
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Similarly, from the local equilibrium equations for layer 1,

o-,) o.-2)
'Cz'z -_xz -

aNq)
0-3) 0-2) = .---y

ey'z - ey'z _,

(4.68)

(4.69)

These equations yield expressions for the shear stresses at the (1-3) interface.

_O-3) (1 J_.)[BT_,cosh(_,y')+Bs_.slnh(_,y') ]
x'z --

y'z --
3

(4.70)

(4.71)

EFFECTIVE ELASTIC BEHAVIOR

The in-plane loads of a damaged layer within the region between two transverse maUSx

cracks have now been completely solved for. The next step is to determine how this layer

will effectively behave, from a macro-level viewpoint, within the laminate. In examining

this behavior, the interest is in the in-plane-average responses (in contrast to the average

through-the-thickness that has been discussed up to this point). In order to emphasize that

the averages being considered in this section are with regard to both the thickness of the

layer as well as the in-plane length, a double over bar notation (T) is introduced to signify

that the average is with respect to both dimensions, and the single over bar notation is

continued to denote averages taken with respect to thickness only.

The effective compliance of layer 1, [_ ]1, is defined by the relationship between the
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in-plane-average strain of the layer, {_}i, and the in-plane-average stress, {_}l, as shown

below,

= s= I (4.72)

Modeling the material in this fashion provides a measure of the effective "secant" (as

opposed to "tangential") behavior of the layer. That is, if the applied strain is assumed to

be removed from the layer, the layer's load will decrease to zero (the origin of the stress-

strain diagram) linearly. Upon reloading, the layer will again behave linearly until

reaching the previous load state. Further straining beyond this point can result in

additional damage accumulation and a reduction in the effeclive modulus as just described.

Expressions for the in-plane-average stress can be determined by integrating the stress

equations (found by dividing equations 4.61 through 4.63 for the in-plane loads by the

layer thickness; i.e., _¢o = N¢O/hi) over the crack bounded region. Note that these

equations are independent of x"; as a result, averaging is only necessary over y'. For the

average stress of layer 1 in the x" direction, this yields

=0) 1 .,_N_,l>.(y')dy"
o_. =_ o hl

BI [cosh(2Xs)-l] ÷ B2 sinh(2Xs) + B,
2hl_s 2ht_.s h I

(4.73)

and similarly for the remaining stress terms,
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a, B, B,
_,, - 2h_s[COsh(2_.s)-l] + 2ht_'s sinh(2).s) + "_z (4.74)

=(I) _ _ [cosh(2Zs)-l] + Bs B9
x+,,.- 2_ ssinh(2_'s) + "_12htAs

(4.75)

The above equations can be used to determine the average in-plane stresses based on the

far-field applied loads (which the coefficients B x through B 9 depend on) and the crack

spacing (2s). The size of this crack spacing can be determined in an iterative manner.

Transverse cracking occurs when the in-plane transverse stress (_y.) reaches the material's

transverse strength (X2). From the form of equation (4.62), it can be seen that the

transverse stress reaches its maximum value at the midpoint of the crack spacing.

Therefore, by iterating on the value of the half crack spacing, s, until the calculated value

of the stress at the midpoint reaches the strength value, i.e. _y.(y'=s) = X2, the crack

spacing can be determined.

Remembering that it is the effective global behavior of the layer within the laminate that

is being modeled, it is reasonable to assume that the average strains appearing in equation

(4.72) are equal to the mid-plane strains of the laminate.

°'} 1":!
, tr,','l

(4.76)

With this assumption, equation (4.72) relates the in-plane average stress of the layer (which

can be calculated) to the strains of the laminate (which can either be measured or
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calculated), all of which arc known. The only unknowns are the four compliance terms.

The assumption has previously been made that the damage effects due to transverse

matrix cracking are restricted to the y" direction. This implies that the effective Young's

modulus in the x" direction should remain unchanged,

and as a result the effective compliance term $iI can be solved for.

1 _ 1 -$11
$11- _I El

(4.77)

{4.78)

This leaves only three remaining unknown terms in the effective compliance matrix, and

these can be found using the three equations comprising equation (4.72).

1 o =(1)'o °/
OyO

5'_ ox. )
Oy,

o

=(1)

_z'y"

(4.79)

(4.80)

(4.81)

Finally, the effective engineering constants (i.e., Young's moduli, shear moduli,

Poisson's ratios - all being described in the secant manner) for the damaged layer can be

determined from the effective compliance matrix. The definitions for the compliance terms

as functions of the engineering constants are given below,
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1 _12
- SZ2-- _

Sn E, E,

1 1

Substituting the effective compliance terms into the above relations, and solving for the

engineering constants yields

_1 = E1 E2- 1

1 $12

These engineering constants describe how the damaged layer effectively behaves within the

laminate system. In the next section, the ability to model the effective behavior of the

damaged material will be used to perform progressive failure studies for example

laminates.

EXAMPLES

In this section, specific example problems are investigated to verify that the generalized

shear-lag model and the traditional shear-lag model agree for simple cross-ply systems, as

well as to look at the more complex material and load configurations which the generalized

model is capable of examining. The computer code (PFRAC, see Appendix D) used in

the analyses models the progressive failure of composite laminates under strain-controlled

conditions. The material strengths are considered to be random variables of known distri-
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TABLE 4.1

Material Properties for Graphite/Epoxy
(Lee and Daniel, 1990)

Longitudinal modulus

Transverse modulus

In-plane shear modulus

Out-of-plane shear modulus

In-plane major Poissca's ratio

I.zngimdiaal teasile streagth

Transverse tensile mmgth

Longiutdiuslcompressive strength

Transverse compressive strength

In-plane shear strength

Intedaminar shear strength"

Ply thickness

"Agm_ and_ t9gO

144.8 GPa

10.7 GPa

7.2 GPa

3.8 GPa

0.285

2167.7 MPa

54.5 MPa

-1440.3 MPa

-227.5 MPa

82.0 MPa

113.0 MPa

0.000127 m

bution, and multiple modes of failure (i.e., longitudinal, transverse, and shear) are

considered within each layer. As individual modes fail, corresponding stiffness reductions

are made via the methods of the previous section as weU as by traditional ply drop-off (or

in this case mode drop-off) techniques. Monte Carlo methods are employed to determine

the cumulative distribution function for the laminate.

In the first example, agreement between a conventional shear-lag model (Lee and

Daniel, 1991; Tsai, et al., 1990) and the generalized model developed in Chapters 3 and

4 is demonstrated for simple cross-ply laminates. The above referenced work examined

a [0/904L graphite/epoxy (Gr/Ep) laminate. The material strengths were assumed to be

deterministic, and thus the four 90 ° layers were considered to behave as one, resulting in
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the conventional two-layer system. The material parameters can be found in Table 4.1.

The Lee and Daniel analysis was performed for a load-controlled system, as opposed to

the strain-controlled system mentioned above for the PFRAC code. Therefore, a modified

version of the code is used for this example problem to allow for a direct comparison.

This material system is examined for two laminate configurations, the [0/904] #

laminate studied by Lee and Daniel, and additionally, a [0_/904/0_]" laminate which is

explored to review the three layer capability of the generalized model. The analysis

simulates a monotonic loading in the 0° direction. The [0/904]" laminate was analyzed

using both the generalized and the conventional shear-lag models, and theI0vJg0J0_]"

laminate was analyzed using the generalized model. The resulting stress/strain curves are

shown in Figure 4.6. As can be seen by the nearly coincident curves, very good

agreement between the models is found. Additionally, it can be noted that a higher load

to failure is predicted for the [0v,/904/0,_] * laminate. This can be attributed to the three-

layer system's generating lower intedaminar shear stresses than the two-layer system, and

thus allowing efficient load tr_sfer up to a higher applied load level.

For the remaining examples, a four problem test matrix is established by examimn"g two

different material geometries as well as two different material systems (Gr/Ep and

SiC/RBSN). The ability of the generalized shear-lag model to handle more complex

laminate configurations is explored using laminate lay-ups of [0/15/80/-15/-80], and

[0/30/60/-30/-60],. In order to perform the reliability analysis for the Gr/Ep material,

Weibull strength parameters are needed, and are listed in Table 4.2 (note that it is assumed

that the tensile and compressive strengths are equivalent). Experimentally determined

values for the out-of-plane material properties of the SiC/RBSN system were not available.
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Figure 4.6: Predicted stress-strain behavior for [0/904], and [0_/904/01,2]= laminates.

For demonstration purposes, values of 130 MPa for the interlaminar shear strength and

27.5 GPa for the out-of-plane shear modulus were assumed.

The example problems will be conducted for cases of applied longitudinal strain,

(ex)_ with free-edge conditions in the y direction (see Appendix D). Even for this

relatively simple applied strain state, the off-axis layers will still be experiencing states of

full in-plane loading. Therefore, examining the occurrences of transverse matrix cracking
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Figure 4.7: Realization of the stress-strain behavior for a [0/15/80/-15/-80],

Gr/Ep laminate.

TABLE 4.2

Weibull Strength Parameters for Gr/Ep

(Wetherhold, 1986)

= P

Longitudinal strength

Transverse strength

In-plane shear strength

25 1516.8 MPa

10 51.7 MPa

15 68.9 MPa
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Figure 4.8: Realization of the stress-strain behavior for a [0/30/60/-30/-60],

Gr/Ep laminate.

in any of the off-axis layers will require taking full advantage of the generalized shear-lag

model.

In the first set of figures, Figures 4.7 through 4.10, characteristic stress-strain

responses are presented for each of the example problems. Each of these response curves

are for one set of real_tions of the material strengths. Contained within each figure are

two curves comparing the results of the shear-lag model and the mode drop-off model.
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Figure 4.9: Realization of the stress-strain behavior for a [0/15/80/-15/-80],

SiC/RBSN laminate.

The algorithms for generating each of the curves use a drop-off technique for modeling

stiffness reductions due to longitudinal and shear failures. However, for transverse failures

(i.e., transverse matrix cracking), one algorithm uses the shear-lag model to determine the

effective elastic properties of the damaged layer, and the other algorithm uses the drop-off

method and removes that mode from future computations. In general, both the shear-lag

and mode drop-off techniques produced comparable results, especially for the Gr/Ep
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Figure 4.10: Realization of the stress-strain behavior for a [0/30/60/-30/-60].
SiC/RBSN laminate.

analyses. This may be partially due to the fact that, toavoid singularity problems with the

computer program, the stiffnesses were not exactly zero when using the drop-off technique.

Thus, a damaged mode retained some load bearing capacity in both models. The stress-

strain curves for all four examples demonstrate the evolution of damage in the material and

the conesponding change in the global level constitutive behavior.

Figures 4.11 through 4.14 contain characteristic plots of the crack density, p [ = (2s) -1 ,
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Figure 4.11: Crack density as a function of applied longitudinal strain for
realization of [0/15/80/- 15/-80], Gr/Ep laminate.

where 2s is the crack spacing ], in the damaged layers as a function of the applied strain.

Note once again, these plots are for a particular realization of material strengths. For the

Gr/Ep examples, it is only the far off-axis layers ( ± 80" and ± 60" ) in each case which

experience transverse matrix cracking. In the SiC/RBSN laminates, cracking is seen in the

15" and 30" near off-axis layers in addition to those further off-axis. The curves for all

four examples are similar in nature, with increasing density and decreasing slope associated
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Figure 4.12: Crack density as a function of applied longitudinal strain for

realization of [0/30/60/-30/-60], Gr/Ep laminate.

with increasing strain. Plateau regions are present in some of the curves, and these can

be attributed to times when there was a sufficient enough decrease in the far-field stress,

due to the failure of various internal modes, that the stress transferred into the damaged

layers was not great enough to cause additional cracking.

The last set of figures, Figures 4.15 through 4.18, contain the cumulative distribution

curves for each of the example problems, with the probability of failure plotted as a
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Figure 4.13: Crack density as a function of applied longitudinal strain for
realization of [0/15/80/- 15/-80], SiC/RBSN laminate.

function of the applied strain. The curves for the GdEp laminates have the typical "S"

shape common to cumulative distribution curves. The SIC/RBSN curves show a very large

scatter in the ultimate strain (i.e., the strain to failure), with the maximum failure strain

occurrence having a magnitude of approximately four times that of the minimum. The

distribution curve for the failure of the [0/15/80/-151-80], SiC/RBSN example in Figure

4.17 levels off at approximately 0.003 strain and then begins increasing again at 0.0035
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Figure 4.14: Crack density as a function of applied longitudinal strain for
realization of [0/30/60/-30/-60], SiC/RBSN laminate.

strain. This is characteristic of a hi-modal distribution. Further examination of the Monte

Carlo results showed that in fact this is so, with the lower end of the distribution curve

representative of those laminate realizations which failed due to the stiffness matrix

violating the positive definiteness requirement, and the higher end of the distribution curve

representative of those laminate realizations which failed due to a sudden 50% drop in the

load carried by the laminate (these two failure criteria are explained in greater detail in
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Figure 4.15: Cumulative distribution curve for [0/15/80/-15/-80]= Gr/Ep laminate.

Appendix D).

SUMMARY

A generaJized shear-lag model has been derived to determine the average through-the-

thickness stress state present in a layer undergoing transverse matrix cracking. The model
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Figure 4.16: Cumulative distn'bution curve for [0/30/60/-30/-60], Gr/Ep laminate.

is capable of considering cracking in layers of arbitrary orientation, states of general in-

plane applied loading, and laminates having a general symmetric stacking sequence. The

model has been shown to agree with a conventional model for the case of a simple cross-

ply laminate. Agreement was also found for the slightly more general three layer cross-ply

system. Example problems were carried out for more general laminate configurations,

namely [0/15/80/-151-80], and [0/30/60/-30/-60], laminates, with results showing the
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Figure4.17:Cumulativedistributioncurvefor[0/15/80/-15/-80]sSiC/RBSN laminate.

evolution of damage in the material and the corresponding change in the global level

constitutive behavior of the laminate.
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Figure 4.18: Cumulative distn"oution curve for [0/30/60/-30/-60], SiCIRBSN laminate.
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CHAPTER 5

Location of Next
Transverse Crack in

Crack Bounded Region

In the solution of Chapter 4, it was implicitly assumed that during damage progression,

the transverse matrix crocks occurred at regularly spaced intervals. This assumption

allowed the solution of the stress state of the damaged hycr to be reduced to the solution

of a characteristic volume bounded by two transverse cracks and having a length equal to

the crack spacing (2s). In this chapter the validity of this assumption will be investigated

qualitatively by examining the probability density function for transverse crack location.

In a classic paper by Oh and Finney (1970), the traditional Weibull analysis was

extended to model the characteristics of the location of failure for brittle materials. It was

demonstrated that for cases where the stress state present in the solid can be stated as a

function of a fax field reference stress as well as location, the probability density function

(pdf) for the location of failure can be determined analytically. In this chapter,

Wetherhold's (1991) treatment of Oh and Finney's work will be followed, and combined

with the solution from Chapter 4 for the stress state present in the region between two

transverse matrix cracks to arrive at the pdf for the next crack (i.e., failure) location.
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CHAPTER 5: Tral_v_ Crack Loc_on

Assuming that failure due to transverse cracking can be modeled using a probabilistic

version of the maximum stress criterion (equation (2.3)), the critical stress which must be

considered is the in-plane transverse stress. In Chapter 4, the solution was presented

(equation (4.61-4.63)) for the state of in-plane stress of a damaged layer for the region

between two transverse matrix cracks. As opposed to the general laminate configuration

studied in Chapter 4, the laminate studied here is simplified for heuristic purposes. A

uniaxially loaded, two layer cross-ply configuration (see Figure 5.1.) is investigated.

Corresponding to this simplified system, several reductions can be made to the general

solution of Chapter 4. Due to the cross-ply configuration, the term _m becomes

identically zero (see Appendix C). Because this is only a two layer problem, the thickness

of the third layer is obviously zero, and drops out of all of the calculations. The uniaxial

loading condition results in only the Pz load (Py. in the transformed coordinates) being

present. Taking the above effects into account and dividing the in-plane load (equation

(4.62)) by the layer thickness, the average through-the-thickness transverse stress for the

damaged layer can be written as

A_.[ l_cosh(2_.S)sinh(_.y,) + cosh(_.y') - I] (5.1)- [ sinh(2Xs)

The functional dependence on the location variable y" for this equation can be separated

and defined by a new function r,

This separation of variables allows the average stress to be expressed as a function of the

applied load and the position.
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®

®

Figure 5.1: Two-layer cross-ply system with matrix cracks in layer 1.

r(y') - A2 1-cc_(2;Ls) sinh(_.y')

hi= sinh(2JLs)

,.(y')= r(y').e,.

. coda(x),')- 1] (5.2)

(5.3)

CRACK LOCATION

Consider that the region between the two transverse cracks consists of n dements.

Each dement may be uniquely specified by its position, y_, and its volume, Aye, where

i = 1,...,n. The probability that element i fails under the transverse stress present on the

element is defined as (Oh and Finney, 1970; Wetherhold, 1991)

Pr[Wamversefailm'eofelementi] = Ony;((_y.),,Ay;) (5.4)

From equation (5.3), the stress present on the element is a function of the position and the

applied load, therefore
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G,,;= G,,;(Pf.y',Ay;) (5.5)

If the stress is considered to be constant over the volume of the element, then this equation

can be restated using a failure density function.

G,,;--,,(P,.,y;)Ay; (5.6)

The function _t is a measure of the probability of failure per unit volume, and is a

function of the reference load and the position.

The conditional probability of failure for an element can also be studied. The

probability that element Ay; fails on the load interval (8; Pf+dPf) given that the element

has already survived a reference load of Pf can be expressed using the following event

statement,

Pr[Ay; fails for load 6(Pf,Pf+dPf) IAy_ smwivedPf] =

(5.7)

p,[(Ay;_fo,lo_d_(_,..p,.÷_.))n(_y;_ved_,.)]
Pr[Ay; sm'vivedPf ]

The probability that Ay _ survived a load of Py. is a subset of the event that it fails on the

intexval (P_; Pf + dPf). Thus, if the condition that the clement fails for a load e (Pf, Pf + dPf)

is met, the condition that it survived load Pf will automatically have been satisfied.

Therefore, the conditional probability in equation (5.7) takes on the ensuing form.

e(p,.,e,.+_.)lay;_,i,_,d e,.]

_ er[Ay;f_ _ (_,;P,.÷_,.)]
Pr[Ay;_'iv_ _,.]
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1 - o,,;(_.,y;,Ay;) (5.8)

The failures of each of the n elements comprising the entire damaged region arc

assumed to be independent events. Thus, the probability of survival for the whole region

is given as the product of the individual survival probabilities. Combining this with

equation (5.8) allows the determination of the probability that the next failure in the region

occurs at element Ay_ for the interval (_;_-+dPy.).

i_'[Ay; fails e(_;Px-+dPy,) 17whole region survivea 4"]

11

II (_ - o,,_(p,..y;.Ay;))
c3G,,y;dPy, j.l

op,. 1 - O,,;(_..y;.Ay;)
(5.9)

R

As the number of elements is allowed to increase, with n approaching infinity in the limit

and the norm of the elemental volumes approaching zero, the finite volume A y_ can be

replaced with the differential sized volume dye. Additionally, the denominator of equation

(5.9) approaches one,

lira _J(1-GaY;_ = 1
ayl-.0

and the numerator, via the classical first order expansion employed by WeibuU, can be

written in the limit as having the foUowing exponential form
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.-.= =
Thus, the probability of equation (5.9) can be written as,

,"r[de===df f_ _(P,;P,.*_-)

n whol_=¢o==,,'_,,=_,-]= h(P,.,y')dy'dP,.

(5.1o)

where h is the joint density function for variables y" and Pf, and is given below.

a* e_p(-f,dy') (5.11)
h(Pf,y')- $Py"

Integrating equation (5.11), either with respect to Py. or y" yields the marginal density

functionsforthe locationof failure,O(y'),or forthereferenceload at failure,g(Pf),

respectively.

,t(y') = fh(P_,,y')a_.
°

(5.12)

8(Pyo)= f h(Py.,y')dy"
ys

(5.13)

In evaluating the joint density function, it is assumed that the probability of failure per

unit volume has a Weibull distribution,

,i,,-,,')=I_'I','')l'=('_'_""I"_, o. ) o. )
(5.14)

where o. is the Weibull scale parameter and m is the Weibull modulus. The following

variable substitution is introduced in order to normalize the location variable,
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y'c[0,_] -- ( - y ; (c[0,1] (5.15)

The joint density function then becomes,

o.I,o.1

where the constant q has been introduced to represent the following integral,

(5.16)

q -- f:r'(()d( (5.17)

The marginal density function for location which is being sought is then found by

substituting expression (5.16) into equation (5.12), and integrating over the full range of

the loading spectrum, i.e. (0,-).

,(_) = foh(l"f , ()d_, = r'(_)
2sq

(5.18)

By definition, if integration is carried out over all possible values of [, thereby

guaranteeing that all possible outcomes of _ have been considered, this integral must be

equal to one (this is a requirement of a pdf). Integration of equation (5.17) yields

1 , 1 (5.19)fo_(_)d_ - 2s

The density function must therefore be normalized in order to insure that the integral

equals one. Denoting the normalized density function as _, the final form for the

marginal density function for location of the next transverse matrix crack between two

existing matrix cracks takes the following form
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= (5.20)
q

EXAMPLES

In this section, the probability density functions describing the location of the next

transverse crack are examined for two material systems, the [02/902] s SiC/RBSN laminate

presented in Chapter2 (Table 2.2) and the [0/90+] s Gr/Ep laminate described in Chapter

4 (Table 4.1). For each of these cases, lxtf' s are generated for a range of crack spacings.

The evaluation of the constant q (equation (5.17)) contained in the final form of the

solution requires numerical integration; all other calculations are capable of being

determined in closed form.

Figure 5.2 contains the results of the (normalized) pdf, ¢_, plotted as a function of the

location, _, for the SiC/RBSN system. Five pdf's are depicted, each corresponding to a

selected value of the crack sp_cing, 2s. These values range from a minimum of 2.5 mm

to a maximum of 50 mm. Results for the Gr/Ep system, analogous to those just described

for SiC/RBSN, are presented in Figure 5.3.

Similar results are found for both material systems. The txif's calculated for large

crack spacings show large central regions of equal probability of failure. This corresponds

to these regions being far enough away from the crack face to have uniformly reloaded.

However, as the crack spacing gets smaller, the distribution narrows. This demonstrates

the tendency towards cracking in the more highly stressed central regions. Consequently,

in the early stages of damage, when the matrix crack density is relatively low, it appears
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2.5
.............. 5.0
..................... 10.0

25.O
...................... 50.0

Figure 5.2: pdf's for next failure location for a [0z/902]s SiC/RBSN laminate.

that the assumption of regularly spaced transverse cracks may be unrealistic (although the

average crack location will always be the midpoint!). However, the global effects of the

damage in these early stages are relatively minor.

density increases, the validity of the regular

As damage progresses, and the crack

spacing assumption gains credence.

Therefore, the assumption of a regular spacing throughout the damage development, which

in turn allows the problem to be modeled via the analysis of a characteristic volume, would

appear to be justified from an engineering standpoint.
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2.5

2

0.5

2.5
.............. 5.0

..................... 10.0

25.O

0
0 0.2 0.4 0.6 0.8 1

Figure 5.3: pdf's for next failure location for a [0/904], Gr/Ep laminate.

SUMMARY

In this chapter, the method developed by Oh and Finney for modeling the characteris-

tics of the location of failure has been revisited. Reworking the stress solution from

Chapter 4 to accommodate the less general cross-ply system, an analytical expression was

developed for the probability density function of the next failure location in a region of a

cross-ply laminate bounded by two existing transverse matrix cracks. In exercising this

model, it was found that, from a qualitative standpoint, the assumption of regularly spaced

transverse matrix cracks is valid.
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Summary
and Conclusions

Methods for probabilistically modeling the progressive failure of brittle matrix

comPosite laminates were investigated in order to more accurately model the failure

process. Failure was approached from a non-interactive standPoint in which each of the

in-plane stresses present in a comPosite layer were assumed to act independently of one

another towards correspondingly separate and independent failure modes.

A modified bundle theory which had been proPosed in the literature to be a good model

for the Post-matrix-cracking strength of a periodically cracked comPosite was examined and

found to poorly predict the distribution in strength which has been commonly observed for

these materials. Extensions to the model were introduced to allow for various material

imperfections, in an effort to expand the predicted distribution of strength. These remedies

were insufficient to solve the problem. Other Possible extensions were indicated, but not

investigated.

A generali_.ed shear-lag theory for analyzing the stress state of a transversely cracked

layer having a general off-axis orientation and subjected to a state of full in-plane loading
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was derived. This represents a major step in the development of shear-lag models, which

prior to this had been limited in application to cross-ply laminates under in-plane normal

or shear loads (but not both). A method for utilizing this theory to model the effective

behavior of a transversely cracked layer within the laminate environment was established

and a computer program was written to fully exercise the model. Results showing the

characteristic stress-strain response, damage accumulation (in terms of the density of

transverse matrix cracks) as a function of applied strain, and cumulative distribution curves

for the probability of failure as a function of applied strain were presented for a variety of

example problems.

An analytical expression for the probability density function for the location of the next

transverse crack occurrence within a crack bounded region was developed for a cross-ply

laminate. The results of this investigation provided qualitative proof that the uniform crack

_g which had been assumed in the shear-lag analysis was a valid engineering

assumption.

This report has looked in detail at various ways by which macro-level behavior of

composites may be extrapolated from micro-level analyses of representative damage

regimes. An approach of this manner should capture enough of the actual physics of the

failure process to provide insight into the best ways to design with these material systems

(this is sacrificed in a truly phenomenological model). At the same time the problem

should be computationally simple enough to allow application of the model to practical

sized components (this not possible with a true micro-level, i.e. fiber/matrix, approach).

In the area of future work, experimental verification of the generalized shear-lag model

is needed. The results of Chapter 4 appear g(xxi qualitatively, but quantitative results are
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necessary. Also, pertaining to the generalized shear-lag model, thermal stress effects need

to be included.
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APPENDIX A

Global Equilibrium
Equations for

Three Layer System

The global equilibrium equations for a three-layer system were stated without proof in

Chapter 4 (equations 4.44, 4.45 and 4.46). In this Appendix, the equilibrium conditions

are derived in order to verify that the forms of these equations are in fact correct.

The derivation begins by considering an undamaged three-layer laminate with

dimensions Lx, Ly and L: (see Figure A. 1). This system is assumed to be subjected to

an applied in-plane displacement field. The applied displacements results in a far-field

loading which is uniform (i.e., the loads are independent of x, y and z) and has a general

in-plane nature (i.e., longitudinal, transverse and shear terms may be present). The far-

field loads are specified in units of force per unit length. Due to the undamaged condition

of the plate and St. Venant's principle, the stress field which arises within the laminate as

a result of the far-field loads is independent of x and y. However, because elastic

properties can change from layer to layer, the stresses may vary from layer to layer as

86



APPENDIX A: Global _'bnum

Figure A.I: Three layer laminate with general in-plane loads applied.

well, and are thus a function of z. Within each of these layers, in-plane loading terms are

defined as the integrated stress through the layer thickness.

<o f o(.O(z)azN_ = (A.1)
kl

(0 _ o (0,N; - f y tz)dz (A.2)
kl

hi

This integration has the effect of "smearing out" the z dependence of the stress, producing

effective in-plane loads.
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Figure A.2: Free body diagram for section along the plane x = x ".

Consider the segment of the laminate resulting from slicing the laminate along the plane

x=x'. A free body diagram, showing the far-field loads on the free edges and the

resultant in-plane loads on the exposed section for each of the layers, is presented in Figure

A.2. Summing the forces in the x and y directions separately, yields,

2;v_o 0 = -P;Z,- P.="+e..="+M?z,

_'" +N? +N?PX '_ "'X

+ N_).Ly + N_).Ly (A.2)

(A.3)

O)
E Fy = 0 = -P_'x" + Py'x'- P_'Ly + -N(I)'L'_7-, + N_)'Ly + N_ "Ly (A.4)

=No,,÷N_)÷N_' CAS)Pxy "'=Y

Similarly, sectioning the laminate along the plane y =y" (see Figure A.3) and summing
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P_,.(L_,-y')

s,%. P_.(Lfy')
N_

A-A

Figure A.3: Free body diagram for section along the plane y = y ".

forces yields the equilibrium equation for the forces in the y direction.

F, : o : P,'Lx÷P_,.(L,-y')
(A.6)

_('_.L-N_'.L_-N_-L_- P_'(L_,-y') -..y -x

= N C') + N_ ) + N? (A.7)Py -'y

Equations (A.3), (A.5) and (A.7) comprise the global equilibriumequations,relating

the far-fieldloads tothe resultantin-planeloadson each layer,for an undamaged laminate.

The question which remains to be answered iswhether or not these equationsstillapply

for a laminate containing transverse matrix cracking.

Due to the system being under a state of displacement control, the onset of damage will

effect the magnitude of the far-field loads (as governed by the constitutive law), however
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they are assumed to remain constant with respect to position (i.e., independent of x, y and

z). Locally, the presence of damage within the laminate produces a stress field within

each of the layers which is no longer independent of position. The assumption from

Chapter 4 that damage effects are direction specific is continued here. For the case of

transverse matrix cracks running in the x direction, damage is induced in the y direction.

This implies that the stresses within the layers are functions of y and z, (i.e.,

=o O(y,z)),

N=(')(y)= fo(=')(y,z)dz
h I

Nyt°(y) = fo_°(y,z)dz
h I

N_)(y) = f'c_(y,z)dz

(A.8)

(A.9)

(A.10)
hi

and thus, the loading terms are functionsof the y position at which theyare evaluated.

Returning to Figure A.3, a cut-away section of the laminate along the plane y =y" is

examined. However, now the resultant in-plane loads are functions of y, N_°(y) and

N_)(y), due to the transverse matrix cracks. Summing the forces on this segment in the

x and y directions yields equilibrium equations for the transverse and shear forces.

Pj, = NO)(y ") +N_)(y ") +N_)(y ") (A. 11)

• ,(1), ,,+ (2) , + (3) ,
exy = .,vxy(y) N_;(y ) N_(y ) (A.12)

With regardto theequilibriumin thex direction,a segment of finitelength x" in thex

direction,and differentiallengthdy inthey direction(seeFigureA.4) isexamined. The

far-fieldloadsremainindependentofposition.The reactionforceson thefacesy = y" and
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Figure A.4: Free body diagram for section of length x" and width dy.

y = y'+ dy are constant due to y being constant on these faces. The reaction forces on

the exposed edge of this segment, x =x', vary with y. The average value of the in-plane

load N_t°(y) over this region can be expressed in integral form as,

• y'+dy

- - N_ (y)dy
dy

(A. 13)

Evaluating this integral using a first-order Taylor series expansion in y', it is found that

_I(x0 = NtxO(y") (A.14)

If higher order terms are neglected, the load may be considered constant over the

differentialspan. Similarly,the shear forcesacting on thisface can also be considered

constant.
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_(0 = N_)(y,) (A.15)xy

Utilizingequations(A.14) and (A.15) and summing forcesin the x directionyieldsthe

finalequilibriumequation,

Px = N°)(Y")+N_)(Y")+Nx°)(Y") (A.16)

Equations (A.11),(A.12) and (A.16) are the finalform for the globalequilibrium

equationsfora threelayersystemwithdamage presentdue totransversematrixcracking.
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Load Transformation
of In-plane Loads

Load terms are typically thought of as vectors (or first order tensors) and are usually

specified in units of force [FORCE]. Accordingly, they transform via the first order tensor

transformation equation,

} [ IfPI" a1"1 arz al'3 PI

/2. [FORCE] = az._ a=.2 az.3 P2

Py arl a3.z a3.3 P_

[FORCE] 03.1)

where the mansformation matrix is comprised of the direction cosines ai.j = cos(//i,f_j).

However, when referring to laminated plates, and plates in general, in-plane loads are

usually specified in units of force per unit length of edge [FORCE/LENGTH]. These

"loads" are actually stress terms which have been integrated over a linear distance

(specifically, the thickness of either the entire plate or an individual layer within the plate).

p f r_c_ ] = fo,(z)azx [u_eam j 03.2)
h

e [ Po.cs ] = fo}z)dz,tu_ozaj 03.3)
/t
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e r,'o,.=I -- f_(z)&tuu,wo'mJ - 03.4)
h

Thus,w_t is_i_Uy =f_ toastheoppZiedZo_dingvector,{P=,P,,P_,},is=_Uy

a convenient grouping in column matrix form of elements which arc actually members of

a second order tensor, and must therefore be transformed accordingly.

The transformation equation for a second order tensor is given in index notation as,

and in matrixnotationas,

%: = Ür,a:z% 03.5)

[o'] = [A][o ][A]7

The transformationmatrix,[A],isdefin_ as

(a.6)

il nx Pl]
3 na P3

03.7)

For an in-plane rotation as shown in Figure B. 1, evaluation of the direction cosines yields,

m1 =n.z _m =cos(O)

n_ = -m2 - n = sin(O)

Pl = P2 = m3 = n3 = 0

P3 = 1

and results in the following form for the transformation matrix,
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• Y

Y

i
v

_'Igure B.I: In-plane transformation of axes.

[ nO][4]=- ,,,o
O I

03.8)

Expanding the matrix multiplications of equation 03.6) for the case of an originally in-plane

stress state, the transformed stress tensor is given by

Oz" "Cz'y" C='z m R 0 o= "¢_, 0 m n

Cx'y" Cry. Cy. = 1/I Oy m

L't=,= "ty.= Cr=j 0 0 0

(-ran% +(mZ-nZ)'c_+mno,) 0

(n2ox-2mn'r_+mZoy) 0

0 0

03.9)

We are only concerned with those terms having non-zero values, i.e., %., %. and _:x'y'.

These non-zero terms can be expressed in the following matrix equation,
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IOy,

x'y

m 2 n 2

= R 2 m 2

-mR mR

2ran

-2mn

(mZ-nz 

40y

a_

Similarly, the transformation relation for the in-plane loads is given by,

p_,, Poaoa _ n2 mZ -2ran

.y -ran mn (mZ-n 2)

03.11)

The reader should note that a matrix is simply a mathematical grouping device. R is not

a tensor, and does not possess the physical characteristics of a tensor. As a result, the

transformation of the in-plane loads must be carried out via equation (B.11) and not

through the first order tensor transformation equation.
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Limitations of
Generalized Shear-Lag

Solution

In Chapter 4, when equation (4.48) was reached in the derivation of the elasticity

solution for the damaged region, the problem had been reduced to a second order ordinary

N °) (Note: this appendix revertsdifferential equation containing two unknowns, _.yN(,l) and ..=,y,

back to using the tilde notation to designate the homogenized system). This equation is

repeated below in equation (C. 1).

d=N(xt') _,,(=NtI)=,,.(i)]3) (C.1)
dy,= - . .y. + rl lVx.y. +

In order to solve this equation, an additional independent equation was needed. For this

purpose, the local equilibrium equation for layer i in the x" direction (equation (4.15))

was used, and combined with the shear-lag equations, and the thickness correction terms.

This resulted in equation (4.53) (rewritten below as equation (C.2)) relating the second

derivative of the shear load to the "difference in strain" term by the proportionality
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constant _12,

where

d2_(l)
• IX_"

dy "2

(c.2)

1

By introducing global equilibrium considerations and displacement continuity in the x"

direction, this differential equation can be reformulated such that the strain terms are

replaced by load terms (equation (4.55/C.4))

d2Ar(1)

dy "2
(c.4)

where _, _1 and _ have been defined in equations (4.49 - 4.51).

.;2_(1)

For equation (C.4) to provide non-lzivial information (i.e., for ""'_"" _ 0), it is
ay 4

necessary to have a non-zero value for _r_. Therefore, in order to determine the

limitations of the solution given in Chapter 4 it must known under what conditions, if any,

= O.

Looking at equation (C.3) the first obvious way in which a zero answer could be

achieved is if _ =/_ = 0. However, this is not a physical possibility for this problem

set and can be disregarded. The second possibility would be if Hx2 = Jr2 = Kz2 = Lx2 = 0.

To examine whether or not this occurrence is possible, the [H], [J], [K] and [L] matrices

are examined in greater detail. These matrices, originally defined in equations (3.28-31)

of Chapter 3, are repeated below,
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[r]--[[O]-[C][A]-'[B]]-_ (c.5)

[HI = [A]-*+ [A]-*[B][L][C] [A]-_ ((2.6)

[J]= -[A]-_[B][L] (c.7)

[K] = -[L][C][A ]-* (C.8)

where [A], [B], [C] and [D] are further defined in terms of the inverses of the layer

stiffnesses.

hi , h_[Q.rl[a] : -3-[o]_ - y j_
hi i

[B]: --_EQ]i

(c.9)

(c.lo)

[c]- hi
6 [Oil' (C.11)

[o]= -_[O]i' h'"1-1+ "_'tv j]
((2.12)

The stiffness matrices appearing in the above equations relate the out-of-plane shear stress

to strain for each of the layers, i.e.,

, , O"liff,',J_
((2.13)

with the primes signifying that the terms have been transformed to the x'-y" coordinate

system.

If each of the stiffness matrices involved in the above computations were to become

diagonal matrices, i.e.,

0 i

then in all subsequent calculations ([ Q']-.[Q']-i -.[A ],[B],[ C],[D ]-.[H],[J],[K],[L]), the off-
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diagonal terms would also be zero. Therefore, in order to determine under what conditions

Ht2 = "/2 = K_ ffi L_a = O, it is necessary to determine the circumstances leading to the

Q_ terms taking on zero values for all three layers at the same time.

The transformed coordinates x'-y" are aligned with the material coordinates of layer

i, therefore [O']t = [Q]I- Since the material is orthotmpic, O;_t) = 0 will always hold

t_e.

Layers _. and :] are homogenized layers. Thdr elastic properties come from averaging

the elastic properties of all the layers (except for layer i, the layer being analyzed for

transverse matrix cracking) from the original system.

[Q']t=[Q']:_ - 1 I_hj[Q']j ) ; j*i=t ((3.15)

j=l

The stiffness term Q_ is an odd function of the angle of orientation, that is to say

0_(+0) = -Q_(-O). Therefore, if in the transformed coordinate system the orientations

of the undamaged layers are balanced with respect to layer i, the summation of the Q_5

for the individual layers will cancel each other out and sum to zero. Thus, if the laminate

configuration is balanced with respect to the damaged layer, the off diagonal stiffness term

will equal zero. As a result, _12 will take on a zero value for this case.

Additional possibilities for which _t2 could achieve a zero value are if either

ic,.)= -th(J,.-L,,)or(H=-K=)= (J,,-L,.) --0weretoocc.r, the

symbolic manipulator MACSYMA*, these expressions can be evaluated in terms of the

inverted stiffness matrices for each layer. The resulting expressions are extremely

complicated in an algebraic sense. The complexity of these expressions makes it
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impossibleto say withoutreservationwhethereitherof theabove conditionscouldoccur,

althoughitcan be statedthatitappearsunlikely.

Thus, thelimitationtothesolutionof Chapter4 isthatitisnot applicabletolaminates

whose configurationissuch thatthe undamaged layersare balancedwith respectto the

damaged layer.
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The PFRAC Algorithm
for Laminate Analysis

The computer code PFRAC, _Progressive Failure and Reliability Analysis of

Composites, which is used in this report models the progressive failure of composite

laminates under strain-controlled conditions. The material strengths are considered to be

random variables of known distribution, and multiple modes of failure (i.e., longitudinal,

transverse, and shear (see Chapter 1)) are considered within each layer. As individual

modes fail, corresponding stiffness reductions are made via the shear-hg methods of

Chapters 3 and 4, as well as traditional ply drop-off (or in this case mode drop-off )

techniques. Monte Carlo methods are employed to determine the cumulative distribution

curves for the Iaminate's probability of failure as a function of the applied strain. This

Appendix provides an overview of theory and logic behind the PFRAC code.

SIMULATING THE STRAIN CONTROLLED TEST

The PFRAC code simulates a strain-controlled environment. The laminated plate in-
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plane constitutive relationship is given by (/ones, 1975)

D'JIM]
(D.1)

with e" being the mid-plane strains, x being the plate curvatures, and N and M being the

in-plane loads and moments, respectively. The prescribed conditions on the system to be

modeled arc: a known value for the applied axial strain, (ex)_, stress-free states for the

in-plane transverse and shear loads (Ny ffi 0 and N_ ffi 0), and moment-free in-plane

conditions (M x = My = M_ = 0). Substituting these known conditions into equation (D. 1),

the unknown strains and loads are given by the following expressions,

•/c _-1 (D.2a)

% = A'2z -N. (D.2b)

A'3, .N= (D.2c)

Thus, all in-plane strains and loads can be determined as a function of the applied

longitudinal strain.

With the full in-plane strain vector known, the stresses within each layer can be

determined

{'}{'}o,
x.) y_,i

(D.3)

In e(luation (D.3),[(_ ], represents the stiffness matrixof layer i transformed to the global

coordinate system. These individual layer stressescan, in turn, bc transformed back to the
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material coordinate systems for a specified layer, and these stresses can be compared to

the corresponding material strengths, X, in order to evaluate failure (i.e., f > 1).

{°'/t x, ), , ,

Based on the stress solution for a very small applied strain, the program can determine

which failure mode will be the first to fail and step to the applied strain level correspond-

ing to its failure. This is possible due to the linear behavior of the undamaged composite.

The strain is increased incrementally from this point forward.

Once a failure state has been attained in an individual mode, steps must be taken to

reduce the stiffness of that mode in an appropriate manner. Failure of modes 1 and 6 are

one time occurrences; that is, once they fail, their corresponding stiffnesses (E t for mode

1 and GI2 for mode 6) are reduced and they are dropped from future computations all

together. (Note, the stiffnesses are reduced by a factor of 10 -7 rather than being set equal

to zero. This is done to avoid encountering singularity problems in succeeding computa-

tions.) A mode 2 failure is modeled using the shear-lag theory which allows for the

damage evolution to be included rather than having complete damage being imposed

immediately as is done with the drop-off techniques.

The shear-lag model determines the effective elastic properties of the damaged layer

based on the homogenized elastic properties of the rest of the laminate and the present

value of the in-plane strain vector { %, cy, '/xy }T. However, referring to equations (D.2),

it is apparent that the in-plane strains are calculated as a function of the laminate stiffness.

The new predicted values for the effective stiffness of the damaged layer will influence the
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following cost function is set up,

APPENDIXD: PFRAC Computer Algorithm

Thus, an iterative process is required. The

C V(cy- ,2 ,2

where • isthe previous strainvalue,and _* isthe updated strainvalue. Note that% does

not appear in the cost function because its value is known and remains fixed until

incremented to the next strainlevel. Theoretically,the correctsolutionhas been reached

when the costfunctionequalszero. Within PFRAC, the convergence criteriahas been set

to C < 1 × I0-s. Experience indicatesconvergence to thisvalue happens quickly,and this

particularvalue returnsrelativelygood accuracy for the corresponding strainvalues.

When the interracialshear stressreaches itslimit,and no increasein load transferis

possible,then thismode isconsidered to be finallyfailed.However, while no additional

load can be sustainedby thelayer,itisassumed thatthe layercontinuesto carry the load

thatitpresentlybears. This assumption isaccounted for by storingthe currentlayerload

in a bufferand reducing the stiffnessesof the layerby a factorof 10-7,so as to effectively

remove the layer from allfuturecomputations. The loads containedin the bufferare then

appended to the computed laminate loads when evaluatingthe totalload supported by the

laminate.

After all the necessary stiffness reductions have been completed, the [,4], [B] and[D]

matrices of the laminate constitutive equation are reformulated, and subsequently the stress

solution is updated. If additional failures are encountered under the updated stress state

(as in a "domino effect"), the appropriate stiffness reductions are made in the manner just

presented. If no additional failures have arisen, the applied strain is incremented, and the
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stress state is evaluated for the new applied strain. The whole process continues until total

laminate failure is reached. There are two criteria by which total laminate failure is

judged. The first criterion accounts for a sudden drop in the load bearing capacity of the

laminate. If, for a given applied strain, internal failures occur resulting in a decrease in

the load by 50% or greater, criterion 1 has been met. A gradual decrease (i.e., over a

range of strain values) of 50% is allowable, only a sudden decrease fails the laminate. The

second criterion deals with the positive definiteness of the material stiffness matrix. The

stiffness matrix for any material is required to be positive defmite in order to ensure that

the strain-energy density function be closed and convex. Thus if the effective stiffness

matrix calculated to satisfy the shear-lag model no longer abides by this requirement, the

laminateisconsideredfailed.

PROBABILISTIC CONSIDERATION

R is assumed that the material strengths, X_ (i = 1, 2 and 6) corresponding to each of

the individual failure modes are characterized by a WeibuLl distribution, i.e.,

exp -( °t] '']
Fx,(ot) = 1- [ _,"_:t)]

(D.6)

where the distribution parameters (¢z_,Pi) characterizing each failure mode can be obtained

from strength data. Due to the random nature of the strengths, the reliability for an

individual hypothetical sample wRl have a value between zero and one inclusive such that
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Fx, = 1-u (D.7)

where u is a uniform random variable contained on the interval [0,1].

Substituting equation (D.7) into equation (D.6) and inverting the distribution function

yields the following realization of the random strength variable,

= (D.S)

Here X_ represents a sample value of X_. By utilizing a uniform random number generator

to obtain values of u, realizations of the strengthcan be obtained. Within the Monte Carlo

procedure, this is done many times in order to achieve a sample population for the

material. This sample population is analyzed for failure in the manner described in the

previous section, and the applied strain present at failure is saved. The recorded failure

swains are then ranked and assigned a corresponding probability of failure, p, using a

median ranking

PJ _ j-0.3 ; j = 1,2,3,...,n (D.9)
n +0.4

where n is the total number of samples.
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